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Appendix S1: Conditions for coexistence in the classic plant-soil
feedback model
Contact: Gaurav S. Kandlikar, gkandlikar@lsu.edu

This appendix begins with a overview of dynamics model from Bever et al. (1997), in‑
cluding detailed steps to convert the underlying exponential growth equations for plants
and microbes into equations for tracking changes in plant and microbe frequencies. Af‑
ter describing the model, I outline two approaches for identifying the conditions that al‑
low long‑term persistence of both plant species in this model. Note that throughout this
appendix, I use 𝑁 to denote state variables that reflect abundances, and 𝐹 to denote fre‑
quency. The subscripts 1 and 2 refer to the plant species, and the subscripts 𝐴 and 𝐵 refer
to their associated soil communities.

Model description
The Bever et al. (1997) framework begins by considering a system comprising two plant
species whose populations grow exponentially at a rate determined by the composition of
the soil microbial community:

d𝑁1
d𝑡 = 𝑊1𝑁1 and

d𝑁2
d𝑡 = 𝑊2𝑁2 (S1.1)

𝑊𝑖, the per‑capita population growth rate of species 𝑖, is determined by the relative fre‑
quency of each microbial community (𝐹𝐴 and 𝐹𝐵), and by the effect of each microbial
community on plant 𝑖 (𝑚𝑖𝐴 and 𝑚𝑖𝐵):

𝑊𝑖 = 𝑚𝑖𝐴𝐹𝐴 + 𝑚𝑖𝐵𝐹𝐵 (S1.2)

Here, the two 𝑚 terms have the units of 1
microbe frequency∗time . 𝐹𝐴 and 𝐹𝐵 represent the rela‑

tive frequency of each microbial community, rather than their absolute abundance. Thus,
𝐹𝐴 + 𝐹𝐵 = 1, and Eqn. S1.2 can also be written as 𝑊𝑖 = 𝑚𝑖𝐴𝐹𝐴 + 𝑚𝑖𝐵(1 − 𝐹𝐴), and 𝑊𝑖
has units of 1

time . Substituting this into the plant dynamics equation (S1.1) gives the full
equations for plant population dynamics:

d𝑁1
d𝑡 = 𝑁1(𝑚1𝐴𝐹𝐴 + 𝑚1𝐵(1 − 𝐹𝐴)) and

d𝑁2
d𝑡 = 𝑁2(𝑚2𝐴𝐹𝐴 + 𝑚2𝐵(1 − 𝐹𝐴))

(S1.3)
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The abundance of soil microbial communities 𝑁𝐴 and 𝑁𝐵 also experiences exponential
growth, with the rate of growth determined by the relative frequency of each plant1:

d𝑁𝐴
d𝑡 = 𝑁𝐴

𝑁1
𝑁1 + 𝑁2

and
d𝑁𝐵
d𝑡 = 𝑣𝑁𝐵

𝑁2
𝑁1 + 𝑁2

(S1.4)

The parameter 𝑣 defines how strongly soil microbial community B accumulates with plant
2, relative to how strongly soil community A accumulates with plant 1.

Recognizing that plant population growth rates depend on the composition of the micro‑
bial community, which in turn depend on the relative frequency of each plant, we can
express the system in terms of plant frequencies. This lets us simplify from the two equa‑
tions in S1.3, to one equation for the frequency of plant 1 (𝐹1 = 𝑁1

𝑁1+𝑁2
):

d𝐹1
d𝑡 = 𝐹1(1 − 𝐹1)[(𝑚1𝐴 − 𝑚2𝐴)𝐹𝐴 + (𝑚1𝐵 − 𝑚2𝐵)(1 − 𝐹𝐴)] (S1.5)

By definition, 𝐹2 = 1 − 𝐹1, and
d𝐹2
d𝑡 = −d𝐹1

d𝑡 .

Similarly, from the equations for tracking change in soil community abundance (Eqns.
Equation S1.4), we can derive equations for the change in the frequency of microbial com‑
munity (𝐹𝐴 = 𝑁𝐴

𝑁𝐴+𝑁𝐵
):

d𝐹𝐴
d𝑡 = 𝐹𝐴(1 − 𝐹𝐴)(𝐹1 − 𝑣(1 − 𝐹1)) (S1.6)

By definition, 𝐹𝐵 = 1 − 𝐹𝐴, and
d𝐹𝐵
d𝑡 = −d𝐹𝐴

d𝑡 .

Deriving Eqn. S1.5 from Eqn. S1.3, and deriving Eqn. S1.6 from Eqn. S1.4 requires applica‑
tion of the quotient rule. To make this derivation more accessible, I provide detailed steps
in Box S1. After Box S1, I outline two complementary ways to evaluate the conditions
for coexistence in this model (via evaluating feasibility and stability of equilibria, or via
evaluating the low‑density growth rates).

1Note that onp. 563 of Bever et al. (1997), the authorswrite (using slightly different notation) that𝑑𝑁𝐴/𝑑𝑡 =
𝑁𝐴𝑁1, implying that the growth rate of microbial community 𝐴 depends on the abundance rather than
frequency of plant 1. I believe this was a typo.
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Box S1: Deriving the equation for plant frequency dynamics from exponential
growth equations

This box details the steps for expressing plant and soil microbial frequency dynamics
(Eqns S1.5 and S1.6) from the exponential growth models (Eqns S1.3 and S1.4).

Plant frequency dynamics To derive the plant frequency dynamics equation, we
first define 𝐹1 as the relative abundance of plant 1: 𝐹1 = 𝑁1

𝑁1+𝑁2
. Our goal now is to

derive the equation for change in 𝐹1 over time: d𝐹1
d𝑡 .

We proceed by applying the quotient rule (for ℎ(𝑥) = 𝑓(𝑥)
𝑔(𝑥) , ℎ′(𝑥) =

𝑓′(𝑥)𝑔(𝑥)−𝑔′(𝑥)𝑓(𝑥)
𝑔(𝑥)2 ) to get

d𝐹1
d𝑡 =

d 𝑁1
𝑁1+𝑁2

d𝑡 =
d𝑁1
d𝑡 (𝑁1 + 𝑁2) − 𝑁1(d𝑁1

d𝑡 + d𝑁2
d𝑡 )

(𝑁1 + 𝑁2)2

Recalling that d𝑁1
d𝑡 = 𝑁1(𝑚1𝐴𝐹𝐴 + 𝑚1𝐵𝐹𝐵) and d𝑁2

d𝑡 = 𝑁2(𝑚2𝐴𝐹𝐴 + 𝑚2𝐵𝐹𝐵),
we can rewrite the equation as follows:

d𝐹1
d𝑡 = 𝑁1(𝑚1𝐴𝐹𝐴 + 𝑚1𝐵𝐹𝐵)

𝑁1 + 𝑁2
−𝑁1(𝑁1(𝑚1𝐴𝐹𝐴 + 𝑚1𝐵𝐹𝐵) + 𝑁2(𝑚2𝐴𝐹𝐴 + 𝑚2𝐵𝐹𝐵))

(𝑁1 + 𝑁2)2

Recalling that by definition, 𝐹1 = 𝑁1
𝑁1+𝑁2

and 𝐹2 = 𝑁2
𝑁1+𝑁2

, this equation simplifies
as follows:

d𝐹1
d𝑡 = 𝐹1[(𝑚1𝐴𝐹𝐴 + 𝑚1𝐵𝐹𝐵) − 𝐹1(𝑚1𝐴𝐹𝐴 + 𝑚1𝐵𝐹𝐵) − 𝐹2(𝑚2𝐴𝐹𝐴 + 𝑚2𝐵𝐹𝐵)]

Combining the first two terms in the square brackets gives:

d𝐹1
d𝑡 = 𝐹1[(1 − 𝐹1)(𝑚1𝐴𝐹𝐴 + 𝑚1𝐵𝐹𝐵) − 𝐹2(𝑚2𝐴𝐹𝐴 + 𝑚2𝐵𝐹𝐵)]

Now, recognizing that 𝐹2 = (1 − 𝐹1), we can simplify this to:

d𝐹1
d𝑡 = 𝐹1[(1 − 𝐹1)[(𝑚1𝐴𝐹𝐴 + 𝑚1𝐵𝐹𝐵) − (𝑚2𝐴𝐹𝐴 + 𝑚2𝐵𝐹𝐵)]]

Moving (1 − 𝐹1) outside the brackets and recognizing that 𝐹𝐵 = (1 − 𝐹𝐴) gives
the frequency dynamics equation as stated in Eqn. 2 of Bever et al. (1997) (see also
Eqn. S1.5 above):

d𝐹1
d𝑡 = 𝐹1(1 − 𝐹1)[(𝑚1𝐴 − 𝑚2𝐴)𝐹𝐴 + (𝑚1𝐵 − 𝑚2𝐵)(1 − 𝐹𝐴)]

continued on next page
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Soil frequency dynamics

Next, we derive the microbial frequency dynamics (Eqn S1.6) from the equations
for change in microbial abundance (Eqn S1.4). As above, we first define 𝐹𝐴 as the
relative abundance of soil community 𝐴: 𝐹1 = 𝑁𝐴

𝑁𝐴+𝑁𝐵
. Our goal now is to derive

the equation for change in 𝐹𝐴 over time: d𝐹𝐴
d𝑡 .

As above, applying the quotient rule yields:

d𝐹𝐴
d𝑡 =

d 𝑁𝐴
𝑁𝐴+𝑁𝐵

d𝑡 =
d𝑁𝐴
d𝑡 (𝑁𝐴 + 𝑁𝐵) − 𝑁𝐴(d𝑁𝐴

d𝑡 + d𝑁𝐵
d𝑡 )

(𝑁𝐴 + 𝑁𝐵)2

Recalling from above that d𝑁𝐴
d𝑡 = 𝑁𝐴𝐹1 and canceling terms gives:

d𝐹𝐴
d𝑡 = 𝑁𝐴𝐹1

𝑁𝐴 + 𝑁𝐵
− 𝑁𝐴(𝑁𝐴𝐹1 + 𝑣𝑁𝐵𝐹2)

(𝑁𝐴 + 𝑁𝐵)2

Recognizing that 𝐹𝐴 = 𝑁𝐴
𝑁𝐴+𝑁𝐵

, and expanding out the second term, we can rewrite
the equation as follows:

d𝐹𝐴
d𝑡 = 𝐹𝐴𝐹1 − 𝐹𝐴(𝑁𝐴𝐹1)

𝑁𝐴 + 𝑁𝐵
− 𝐹𝐴(𝑣𝑁𝐵𝐹2)

𝑁𝐴 + 𝑁𝐵

Once again recognizing that 𝐹𝐴 = 𝑁𝐴
𝑁𝐴+𝑁𝐵

, we can further simplify the equation:

d𝐹𝐴
d𝑡 = 𝐹𝐴𝐹1 − 𝐹 2

𝐴(𝐹1) − 𝑣𝐹𝐴𝐹𝐵(𝐹2)
Factoring out 𝐹𝐴 gives

d𝐹𝐴
d𝑡 = 𝐹𝐴(𝐹1 − 𝐹𝐴𝐹1 − 𝑣𝐹𝐵𝐹2)

We can further factor out 𝐹1 in the parenthetical term to rewrite the equation:

d𝐹𝐴
d𝑡 = 𝐹𝐴(𝐹1(1 − 𝐹𝐴) − 𝑣𝐹𝐵𝐹2)

Recognizing that 1 − 𝐹𝐴 = 𝐹𝐵, we can write:

d𝐹𝐴
d𝑡 = 𝐹𝐴(𝐹1𝐹𝐵 − 𝑣𝐹𝐵𝐹2) = 𝐹𝐴(1 − 𝐹𝐴)[𝐹1 − 𝑣(1 − 𝐹1)]

This is the same as Eqn. 3 in Bever et al. (1997), and Eqn. S1.6 above.
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Evaluating coexistence by analysing the feasibility and stability of equilibrium
points
The first approach to deriving the conditions necessary for coexistence of the two plant
species involves identifying the conditions under which the model’s equilibria are both
feasible and stable. Feasible equilibrium points mean that all the components of the sys‑
tem (in this case, the two plant species and their associated microbial communities) are
present in the system at equilibrium; stability means that slight perturbations from the
equilibrium do not push the system towards exclusion of one plant or the other. This ap‑
proach builds on the insight that for two‑species Lotka‑Volterramodels, feasible equilibria
that are locally stable guarantee coexistence (Goh, 1976).

Identifying the equilibrium conditions

The first step in this analysis is to find the equilibrium points of themodel. To do so, we set
Eqns. S1.5 and S1.6 equal to zero. We can start by evaluating the plant dynamics equation:

d𝐹1
d𝑡 = 𝐹1(1 − 𝐹1)[(𝑚1𝐴 − 𝑚2𝐴)𝐹𝐴 + (𝑚1𝐵 − 𝑚2𝐵)(1 − 𝐹𝐴)] = 0

This condition is satisfied when 𝐹1 = 0 or when 𝐹1 = 1, which corresponds to cases
in which the plant community is a monoculture of species 2 or 1 respectively. However,
equilibrium can also arise when the third term (i.e. the term in square brackets) is equal to
zero:

[(𝑚1𝐴 − 𝑚2𝐴)𝐹𝐴 + (𝑚1𝐵 − 𝑚2𝐵)(1 − 𝐹𝐴)] = 0 (S1.7)

Solving this for 𝐹𝐴 shows that equilibrium is achieved when the following is true:

𝐹 ∗
𝐴 = 𝑚2𝐵 − 𝑚1𝐵

𝑚1𝐴 − 𝑚2𝐴 − 𝑚1𝐵 + 𝑚2𝐵
= 𝑚2𝐵 − 𝑚1𝐵

𝐼𝑆
(S1.8)

Given that d𝐹2/𝑑𝑡 = −d𝐹1/d𝑡, Equation S1.8 also implies that d𝐹2/d𝑡 = 0.

For the whole system to be at equilibrium, the microbial communities also need to be at
equilibrium:

d𝐹𝐴
d𝑡 = 𝐹𝐴(1 − 𝐹𝐴)[(𝐹1 − 𝑣(1 − 𝐹1)] = 0 (S1.9)

As above, themicrobial community can equilibratewhen it comprises entirely ofmicrobial
community 𝐴 or 𝐵, corresponding to 𝐹𝐴 = 1 or 𝐹𝐴 = 0, respectively. The community is
also at equilibrium when the third term (in square brackets) is equal to zero:
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𝐹1 − 𝑣(1 − 𝐹1) = 0

Solving this for 𝐹1 shows that equilibrium requires the following to be true:

𝐹 ∗
1 = 𝑣

1 + 𝑣 (S1.10)

Identifying feasible equilibrium points

Having identified the equilibrium conditions (Eqns. S1.8 and S1.10), we next evaluate the
conditions under which this equilibrium is feasible, i.e. what is required for the equilibrium
frequency of both plants and microbes to be between 0 and 1 (0 < 𝐹 ∗

𝐴 < 1 and 0 < 𝐹 ∗
1 <

1).

For simplicity, we begin with 𝐹 ∗
1 . The value of Eqn. S1.10 will be between 0 and 1 for any

𝑣 > 0. In other words, so long as both plant species condition the soil community, this
condition is satisfied.

Next we move to Eqns. S1.8. Two sets of conditions can allow for 0 < 𝐹 ∗
𝐴 < 1:

Condition 1: The numerator and denominator of Eqn. S1.8 are both positive
(𝑚2𝐵 − 𝑚1𝐵 > 0 and 𝑚1𝐴 − 𝑚2𝐴 − 𝑚1𝐵 + 𝑚2𝐵 > 0), and the magnitude of
the numerator is smaller than that of the denominator (𝑚2𝐵 − 𝑚1𝐵 < 𝑚1𝐴 −
𝑚2𝐴 − 𝑚1𝐵 + 𝑚2𝐵).2

Condition 2: The numerator and denominator of Eqn. S1.8 are both negative
(𝑚2𝐵 − 𝑚1𝐵 < 0 and 𝑚1𝐴 − 𝑚2𝐴 − 𝑚1𝐵 + 𝑚2𝐵 < 0), and the magnitude
of the numerator is smaller than that of the denominator (abs(𝑚2𝐵 − 𝑚1𝐵) <
abs(𝑚1𝐴 − 𝑚2𝐴 − 𝑚1𝐵 + 𝑚2𝐵))

If either condition is met (along with the condition that 𝑣 > 0), the system has a feasible
equilibrium point at which all players (both plants and both microbes) are present in the
system at a frequency between 0 and 1. If neither of these conditions is met (e.g. if 𝐼𝑆 < 0
but𝑚2𝐵−𝑚1𝐵 > 0), the systemdoes not have an internal equilibrium; in otherwords, the
system only has a boundary equilibrium corresponding to only one species being present
in the system.

The next step for understanding the coexistence conditions in this model is to evaluate the
dynamic stability of these equilibrium points.

2Note that due to algebra, if 𝑚2𝐵 > 𝑚1𝐵 and 𝐼𝑆 > 0, 𝑚1𝐴 > 𝑚2𝐴 is implied; likewise, if 𝑚2𝐵 < 𝑚1𝐵
and 𝐼𝑆 < 0 (Condition 2) is satisfied, 𝑚1𝐴 < 𝑚2𝐴 is implied.
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Evaluating the dynamic stability of equilibrium points

While the above expressions (conditions 1 and 2, along with 𝑣 > 0) capture the conditions
necessary for the existence of feasible equilibrium points, long‑term coexistence also re‑
quires that these points are dynamically stable (i.e. that the system recovers equilibrium
from slight perturbations away from the equilibrium state, Goh (1976)).

We can evaluate the local stability of the equilibria using the Jacobianmatrix of the system,
which is denoted J. The Jacobian matrix helps us evaluate whether or not a system that is
at equilibrium returns to the equilibrium when it is perturbed slightly. Each element in J
is the partial derivative of one of the dynamics equations (Eqns S1.5 and S1.6) with respect
to one of the components:

J = [
𝜕 ̇𝐹1
𝜕𝐹1

𝜕 ̇𝐹1
𝜕𝐹𝐴

𝜕 ̇𝐹𝐴
𝜕𝐹1

𝜕 ̇𝐹𝐴
𝜕𝐹𝐴

]

Note that above, ̇𝐹1 = d𝐹1
d𝑡 , and ̇𝐹𝐴 = d𝐹𝐴

d𝑡 . Taking the respective partial derivatives gives
us the following expressions for the four elements of the matrix:

𝜕 ̇𝐹1
𝜕𝐹1

= (1 − 2𝐹1)[(𝑚1𝐴 − 𝑚2𝐴)𝐹𝐴 + (𝑚1𝐵 − 𝑚2𝐵)(1 − 𝐹𝐴)]
𝜕 ̇𝐹1
𝜕𝐹𝐴

= 𝐹1(1 − 𝐹1)(𝑚1𝐴 − 𝑚2𝐴 − 𝑚1𝐵 + 𝑚2𝐵) = 𝐹1(1 − 𝐹1)𝐼𝑆

𝜕 ̇𝐹𝐴
𝜕𝐹1

= 𝐹𝐴(1 − 𝐹𝐴)(1 + 𝑣)
𝜕 ̇𝐹𝐴
𝜕𝐹𝐴

= [𝐹1 − 𝑣(1 − 𝐹1)](1 − 2𝐹𝐴)

These four terms define the entries of the Jacobian matrix, which we can now evaluate at
the system’s equilibrium points to determine their local stability.

Recall from our analysis of Eqn. S1.7 that at equilibrium, [(𝑚1𝐴 − 𝑚2𝐴)𝐹𝐴 + (𝑚1𝐵 −
𝑚2𝐵)(1 − 𝐹𝐴)] = 0; thus, 𝜕 ̇𝐹1

𝜕𝐹1
also equals 0 at equilibrium.

Similarly, recall from the analysis of Eqn. S1.9 that [𝐹1 − 𝑣(1 − 𝐹1)] = 0 at equilibrium;
thus, 𝜕 ̇𝐹𝐴

𝜕𝐹𝐴
also equals zero at equilibrium.

The system’s Jacobian evaluated at its equilibrium (𝐹 ∗
1 , 𝐹 ∗

𝐴) thus simplifies as follows:

J|𝐹 ∗
1,𝐹 ∗

𝐴
= [ 0 𝐹1(1 − 𝐹1)𝐼𝑆

𝐹𝐴(1 − 𝐹𝐴)(1 + 𝑣) 0 ]

We can evaluate the local stability of the equilibrium points on the basis of the trace and
determinant of the matrix J (Panvilov et al., 2021). The trace (tr) for a square matrix is the
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sum of its diagonal entries, so tr(J|𝐹 ∗
1,𝐹 ∗

𝐴
) = 0.

Given that the trace of the matrix is zero, the equilibrium can have one of two properties:

1. The equilibrium is a “center equilibrium” if the determinant is positive
(Panvilov et al., 2021). A center equilibrium implies that the system is
neutrally stable, meaning that the system never returns to the equilib‑
rium point itself after perturbation; it remains in a perpetual cycle. For
our purposes, we interpret this as a coexistence equilibrium, because it
implies that both species have cyclical dynamics of their frequency in the
system.

2. The equilibrium is a saddle node if the determinant is negative (Panvilov
et al., 2021). Thismeans that once perturbed from equilibrium, the system
continues moving away from the equilibrium (peturbations in favor of
species 1 eventually lead to monodominance by species 1, and vice‑versa
for perturbations in favor of species 2).

Thus, whether or not any feasible equilibrium point corresponds to stable coexistence is
determined by the sign of the determinant.

Recalling that the determinant of a generic two‑by‑two matrix (𝑎 𝑏
𝑐 𝑑) is equal to (𝑎𝑑) −

(𝑏𝑐), the determinant of 𝐽 is as follows:

det(J|𝐹 ∗
1,𝐹 ∗

𝐴
) = 0 − [

term 1
⏞⏞⏞⏞⏞⏞⏞⏞⏞(𝐹𝐴(1 − 𝐹𝐴)(1 + 𝑣)) ∗

term 2
⏞⏞⏞⏞⏞⏞⏞(𝐹1(1 − 𝐹1)𝐼𝑆)]

Given that we are evaluating feasible equilibrium points where 0 < 𝐹𝐴, 𝐹𝐵 < 1, and
𝑣 > 0, term 1 is always positive. Additionally, given that by definition at the feasible
equilibrium 0 < 𝐹1, 𝐹2 < 1, the sign of term 2 ‑ and thus, the sign of the determinant as a
whole ‑ is determined by the sign of 𝐼𝑆. Specifically, negative values of 𝐼𝑆 correspond to
a positive determinant, while positive values of 𝐼𝑆 correspond to a negative determinant.

Building on the two potential properties listed above, this means that the equilibrium is
neutrally stable if 𝐼𝑆 < 0, or is a saddle node if 𝐼𝑆 > 0.
Combining the criteria for feasibility and stability

From the above analysis, we see that only the equilibrium points in which both species
can coexist with neutral stability satisfy Condition 2 for feasible equilibria:

𝑚2𝐵 − 𝑚1𝐵 < 0 and 𝑚1𝐴 − 𝑚2𝐴 − 𝑚1𝐵 + 𝑚2𝐵 < 0.

Note that the above inequality implies that 𝑚1𝐴 < 𝑚2𝐴. Thus, we can express the coex‑
istence conditions simply as:

𝑚2𝐵 < 𝑚1𝐵 and 𝑚1𝐴 < 𝑚2𝐴 (S1.11)
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Evaluating coexistence by analysing the requirements for mutual invasion
While the above approach derives the coexistence criteria by evaluating the conditions
for local stability around feasible equilibria, one can also approach coexistence criteria by
evaluating the conditions that allow mutual invasibility (Turelli, 1978; Chesson and Ell‑
ner, 1989; Grainger et al., 2019). As explained in the main text of the manuscript, this ap‑
proach builds on the insight that coexistence requires that each species can gain a foothold
(i.e. achieve a positive low‑density growth rate, or LDGR) as it grows into an equilibrium
monoculture of the other. Following Chesson (2000) and Chesson (2018), one can further
decompose the LDGRs into two terms ‑ one that captures the microbially mediated stabi‑
lization (which promotes both species’ invasion growth rates, and thus favors coexistence),
and a second term that captures the microbially mediated fitness difference (which bene‑
fits one plant’s invasion growth rate but suppresses the other, and thus favors exclusion).
The details of this analysis are provided in the appendix of Kandlikar et al. (2019), and
summarized below.

We begin the analysiswith Eqn. S1.5, which defines the dynamics of each plant’s frequency
in the system:

d𝐹1
d𝑡 = 𝐹1(1 − 𝐹1)[(𝑚1𝐴 − 𝑚2𝐴)𝐹𝐴 + (𝑚1𝐵 − 𝑚2𝐵)(1 − 𝐹𝐴)]

We first evaluate the case where the system is an equilibriummonoculture of plant 2 (and
its corresponding soil community). Plant 1 and its soil community are absent, meaning
that 𝐹1 = 𝐹𝐴 = 0. We can now quantify plant 1’s per‑frequency growth rate ( 1

𝐹1
d𝐹1
d𝑡 ) as

follows:

LDGR1→2 = 1
𝐹1

d𝐹1
d𝑡 = (1 − 𝐹1)[(𝑚1𝐴 − 𝑚2𝐴)𝐹𝐴 + (𝑚1𝐵 − 𝑚2𝐵)(1 − 𝐹𝐴)] (S1.12)

Given that 𝐹1 = 𝐹𝐴 = 0, Eqn. S1.12 simplifies as follows:
LDGR1→2 = 𝑚1𝐵 − 𝑚2𝐵 (S1.13)

Through a similar analysis of plant 2’s growth into a monoculture of plant 1, we get the
invasion growth rate of plant 2:

LDGR2→1 = 𝑚2𝐴 − 𝑚1𝐴 (S1.14)

If both of these conditions are satisfied, both species have positive low‑density growth
rates and can coexist provided that the following is true. Thus, this analysis yields the
coexistence criteria:

𝑚1𝐵 > 𝑚2𝐵 and 𝑚2𝐴 > 𝑚1𝐴 (S1.15)

The inequalities in Eqn. S1.15 are identical to those that we derived through the feasibility
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analysis aboveEqn. S1.11, showing the inherent complementarity of these two approaches.
If our goal were to simply evaluate coexistence in the Bever et al. (1997) model, simply
evaluating LDGRs is a perfectly valid ending: if both LDGRs are positive, the two species
can coexist; if the LDGRs are of opposite signs, the species with a positive LDGR outomes
the other; and if both LDGRs are negative, the species experience frequency‑dependent
priority effects such that either species can establish a monoculture, but both cannot coex‑
ist.

However, we can extend our analysis further to generate additional insights. Specifically,
decomposing the LDGRs into microbially mediated stabilization and fitness differences
allows us to integrate plant‑microbe interactions into a wider body of work that seeks to
understand how plant coexistence is structured by competition, pollinators, herbivores,
etc. (see main text for citations to specific examples).

As explained in Chesson (2018) and in Appendix S1 of Kandlikar et al. (2019), the first step
in this decomposition is to define the species‑level average fitness. In the case of the Bever
et al. (1997) model, we can define the average fitness of species 1 as its average growth
rate at all possible soil states (from 𝐹𝐴 = 0 to 𝐹𝐴 = 1):

fitness1 =
∫1
0 𝑚1𝐵 + (𝑚1𝐴 − 𝑚1𝐵)𝐹𝐴𝑑𝐹𝐴

∫1
0 𝑑𝐹𝐴

= 𝑚1𝐵𝐹𝐴+𝑚1𝐴 − 𝑚1𝐵
2 𝐹 2

𝐴∣
1

0
= 𝑚1𝐴 + 𝑚1𝐵

2

Similarly, fitness2 = 𝑚2𝐴+𝑚2𝐵
2 . With these definitions of species 1 and 2’s average fitness,

we can express each species’ invasion growth rate as the sum of the fitness difference and
stabilization:

LDGR1 = fitness difference1,2 + stabilization (S1.16)

LDGR2 = fitness difference2,1 + stabilization (S1.17)

Note that fitness difference1,2 is simply the difference between species 1 and 2’s average
fitness as defined above:

fitness difference1,2 = (

plant 1 fitness

⏞⏞⏞⏞⏞𝑚1𝐴 + 𝑚1𝐵
2 ) − (

plant 2 fitness

⏞⏞⏞⏞⏞𝑚2𝐴 + 𝑚2𝐵
2 )

The order of the two terms is flipped for calculating fitness difference2,1. Thus, in the
absence of stabilization, only one species can have a positive invasion growth rate, and
coexistence is not possible.

Above, we saw that LDGR1→2 = 𝑚1𝐵−𝑚2𝐵 (Eqn S1.13). Substituting this into Eqn. S1.16,
we get:
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𝑚1𝐵 − 𝑚2𝐵 = (𝑚1𝐴 + 𝑚1𝐵
2 ) − (𝑚2𝐴 + 𝑚2𝐵

2 ) + stabilization

Algebra (detailed in Box S2) yields the expression for stabilization:

stabilization = −1
2(𝑚1𝐴 − 𝑚1𝐵 − 𝑚2𝐴 + 𝑚2𝐵) = −1

2𝐼𝑆

For both species to have a positive LDGR, the strength of stabilization should exceed the
absolute value of the fitness difference3:

stabilization > 𝑎𝑏𝑠(fitness difference)
When fitness differences exceed stabilization, only the species with the higher fitness can
invade into a monoculture of the other; this corresponds to species exclusion.

Negative stabilization (destabilization) suppresses each species’ LDGR. If it does so to the
point that neither species has a positive LDGR, the system experiences priority effects:
whichever species is present at a higher initial frequency will dominate, and the species
with the lower initial frequency eventually gets excluded.

Box S2: Deriving the stabilization term

Above, we saw that the LDGR1→2can be expressed as follows:

LDGR1→2 = 𝑚1𝐵 − 𝑚2𝐵 = (𝑚1𝐴 + 𝑚1𝐵
2 ) − (𝑚2𝐴 + 𝑚2𝐵

2 ) + stabilization

We can rewrite this as follows:

𝑚1𝐵 − 𝑚2𝐵 = 1
2𝑚1𝐴 + 1

2𝑚1𝐵 − 1
2𝑚2𝐴 − 1

2𝑚2𝐵 + stabilization

Moving the terms to the left of the equal sign to the right, and moving stabilization
to the left gives

−stabilization = 1
2𝑚1𝐴 − 1

2𝑚1𝐵 − 1
2𝑚2𝐴 + 1

2𝑚2𝐵

This equation simplifies to the expression for stabilization:

stabilization = −1
2(𝑚1𝐴 − 𝑚1𝐵 − 𝑚2𝐴 + 𝑚2𝐵)

3the absolute value of (fitness difference)1,2 equals that of (fitness difference)2,1, so subscripts are not re‑
quired
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The decomposition also applies to LDGR2→1
While we derived stabilization from plant 1’s LDGR, we can show that this applies
equally well to plant 2’s low density growth:

LDGR2→1 = fitness difference2,1 + stabilization

Substituting the expressions for fitness difference2,1 and stabilization gives us:

LDGR2→1 = 𝑚2𝐴 + 𝑚2𝐵
2 − 𝑚1𝐴 + 𝑚1𝐵

2 − 1
2(𝑚1𝐴 − 𝑚1𝐵 − 𝑚2𝐴 + 𝑚2𝐵)

Through algebra, we recover Eqn. S1.17 as above:

LDGR2→1 = 𝑚2𝐴 − 𝑚1𝐴

The coexistence criteria in terms of stabilization/fitness difference is equivalent to
that from the LDGR analysis
Finally, we can show that the coexistence criteria expressed as “stabilization >
abs(fitness difference)” is equivalent to the criteria in Eqn. S1.15.
Recall the coexistence criteria in terms of stabilization and fitness difference:

stablization
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
− 1

2((𝑚1𝐴 + 𝑚2𝐵) − (𝑚2𝐴 + 𝑚1𝐵)) > abs(

fitness difference1,2

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞1
2(𝑚1𝐴 + 𝑚1𝐵) − 1

2(𝑚2𝐴 + 𝑚2𝐵) )
(S1.18)

By dividing though by −1
2 , this can be rexpressed as follows:

𝑚1𝐴 + 𝑚2𝐵 − 𝑚2𝐴 − 𝑚1𝐵 < abs(𝑚1𝐴 + 𝑚1𝐵 − 𝑚2𝐴 − 𝑚2𝐵)
To accounting for the absolute value function on the right, this inequality can bewrit‑
ten as two separate inequalities:

𝑚1𝐴 + 𝑚2𝐵 − 𝑚2𝐴 − 𝑚1𝐵 < 𝑚1𝐴 + 𝑚1𝐵 − 𝑚2𝐴 − 𝑚2𝐵 (S1.19)

𝑚1𝐴 + 𝑚2𝐵 − 𝑚2𝐴 − 𝑚1𝐵 > −𝑚1𝐴 − 𝑚1𝐵 + 𝑚2𝐴 + 𝑚2𝐵 (S1.20)

Cancelling like terms in Eqn. S1.19 gives 𝑚1𝐵 > 𝑚2𝐵, and doing the same in
Eqn. S1.20 𝑚1𝐴 > 𝑚2𝐴. Together, these are identical to Eqn. S1.15.
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